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Abstract-Solidification of a binary mixture (NH,&H,O) contained in a square cavity is simulated 
numerically. The anisotropic permeability of the mushy region is incorporated in the model by means of 
a specific permeability tensor and the principal permeability ratio R. Comparison of representative results 
with previously reported experimental data shows that the model is capable of resolving fundamental 
characteristics of the solidification process. Effects of the anisotropy appear to be significant. A small 
permeability ratio R not only promotes the growth of the secondary layer but also results in a large 
concentration difference between the mushy and the pure liquid regions. Due to the liquidus temperature 
depression by higher concentration and the earlier developed thermal convection in the upper layer, severe 
remelting is also found to occur. In addition, flow interaction across the macroscopic solidification front 

becomes stronger with increasing permeability ratio R. 

INTRODUCTION 

SOLIDIFICATION of non-eutectic binary or multi- 
component mixtures, in contrast to pure substances 
and eutectic mixtures, can be characterized by the 

presence of a two-phase (mushy) region over an 
extended temperature range and a difference in solu- 

bility between liquid and solid phases. The mushy 
region has a microstructure similar to that of a satu- 
rated porous medium so that not only is fluid flow 
taking place in the region, but the flow may also 
interact with that of the neighboring pure liquid 

region. The different solubility of the species in the 
mushy region results in the development of con- 
centration gradients, hence, natural convective 

motion can be induced by both solutal and thermal 
buoyancy forces in the melt pool as well as in the 

mushy region. The importance of double-diffusive or 
thermosolutal convection during solidification of 
binary mixtures has been well recognized in a variety 
of solidification processes [l-3]. It can significantly 
affect heat and mass transfer along the solidification 
front and thereby alter the solidification charac- 

teristics. Development of a more realistic math- 
ematical-numerical model for this fundamental trans- 
port phenomenon must, therefore, be based on the 
experimental observations in order to obtain 
improved predictions of the solidification processes. 

In general, the mushy region which is formed during 
solidification of non-eutectic mixtures under mod- 
erate cooling rates has a columnar-dendritic mor- 
phology, except during the very early and the final 
stage of the process. Due to the directional nature of 
columnar dendrites, interdendritic fluid flow depends 

on flow direction. When Darcy’s law is adopted to 
describe the flow through the mushy region in macro- 

scopic models, this directional dependence can be 
expressed in terms of the anisotropic permeability. In 
fact, there has been a number of experimental studies 
which have demonstrated the anisotropy of the per- 

meability. Okamoto and co-workers [4, 51 measured 
the permeability of columnar-dendritic structure 
using a borneol-paraffin organic binary system and 
found that permeabilities for flow parallel and normal 
to the dendrites were significantly different. They also 

presented a functional relation of the permeability in 
terms of the liquid volume fraction and dendrite arm 
spacings. The same trends have been reported for a 

metal alloy system (PbSn) by Nassar-Rafi et al. [6], 
who concluded that the permeability is, in fact, aniso- 
tropic in columnar-dendritic structures. Poirier [7] 

confirmed this fact through reexamination of the 
earlier experimental data. 

Recently, considerable research attention has been 

focused on the development of sophisticated theor- 
etical models to predict transport phenomena such as 

double-diffusive convection heat and mass transfer 
which accompany the solidification of mixtures. This 
is not only because there is interest in understanding 
solidification process, but also because the com- 
plicated transient phenomena are difficult to observe 
experimentally and measure with a reasonable accu- 
racy. Comparisons of predictions based on models in 
some simplified geometries [8, 91 with experimental 
results using metal alloy analogs have been encour- 
aging, but they have failed to achieve close quan- 
titative agreement. The discrepancy may be attributed 
to many factors. For one, the anisotropy of the mushy 
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NOMENCLATURE 

B body force vector T temperature 

: 
specific heat u, L; x-, y-direction velocity components 
~on~ntration V velocity vector 

A.c, (‘PI - cp* x, J coordinate axes. 
D mass diffusion coefficient 

.f‘ mass fraction or function 

.4 volume fraction or gravitational 
acceleration 

12 enthalpy 
. . 
;” 

x-, _r-direction unit vectors 
thermal conductivity 

k, equilibrium partition coefficient 
K mean permeability 

Greek symbols 

Bc solutal expansion coefficient 

Pr thermal expansion coefficient 

s”* r principat directions 

II dynamic viscosity 
density 
mixture quantity. 

KO permeability coefficient 
Kii, K,, principal permeability components Subscripts 
K’2’ permeability tensor e eutectic 
L latent heat or cavity length in initial state 

P pressure 1 liquid 
R principal perIneabiiity ratio ref reference state 
I time S solid. 

region should be accounted for [lo]. Since the per- 
meability is responsible for the interdendritic fluid 
flow and thereby affects heat and mass transfer over 
the entire domain, its anisotropy, as discussed before, 
can alter the transport processes signi~cantly. Accord- 
ingly, the anisotropy needs to be taken into account 
to obtain improved predictions and to determine its 
effects on the transport processes as well as to establish 
if it can be neglected. There have, however, been no 
attempts to account for the anisotropy of the per- 
meability in model predictions. The present study is 
motivated by this fact and is aimed to show numeri- 
cally how the anisotropic pe~eability affects the 
transport process during solidification of binary mix- 
tures. 

The aqueous ammonium chloride solution 
(NH,Cl-H20) has been chosen as the model of a 
binary system, because its solidification micro- 
structure is similar to that of metal alloys which are of 
practical interest, and its the~ophysical properties 
are well es~blished [l 11. Furthenore, the buoyancy 
factor of water-rich NH,Cl-H,O system is approxi- 
mately - 1.4, i.e. thermal and solutal buoyancy forces 
are of nearly the same order of magnitude, but act in 
opposite directions, so that this system is convenient 
to examine a typical pattern of double-diffusive con- 
vection. Since the focus of this study lies in inves- 
tigating the effects of anisotropic permeability, a well 
known as well as simplified physical model has been 
adopted. The geometry is a two-dimensional square 
cavity with heating/cooling vertical walls and adia- 
batic horizontal connecting walls. In the numerical 
computations, a permeability model is constructed to 
accommodate the anisotropy in the governing equa- 

tions. The principal permeability ratio, R, is also intro- 
duced as a measure of the anisotropy, and the simu- 
lated results are presented in terms of this parameter. 

ANALYSIS 

Mathematical model 
Since the earlier pioneering works [I 1, 121 which 

took into account natural convection when modeling 
the solidification process in binary systems, various 
mathematical-numerical models capable of dealing 
with coupled fIuid flow and heat and mass transfer 
have been proposed. A comprehensive review of the 
studies is available [2] in which basic features of each 
model are summarized. In fact, most of the for- 
mulations belong to either the continuum or the 
(local) volume-averaging models according to the 
manner in which multi-phase systems are described. 
Although the approaches differ from each other 
regarding fo~ulation of the model equations, there 
is no substantial difference in the final equations 
which have been deduced for each model as far as the 
macroscopic formulation is concerned. Both of the 
models consist of conservation equations for total 
mass, momentum, energy, and species, and the sup- 
plementary thermodynamic relations for closure in 
similar forms. A set of equations adopted in this study 
can, therefore, be derived from either the continuum 
or the volume-averaging models. Detailed derivation 
of macroscopic transport equations can be found in 
the literature [13-161, except for the permeability in 
the momentum equation. The governing equations in 
the general forms are as follows : 
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$+V.(pV)=O (1) 

aw) 
,t+v*(pvv) = -vp+v.(pv)+pB-g) 

(2) 

awl) 
--at +V.(pVh) = V*(kVT)-V*p(h, -h)V (3) 

a(Pc) 
at- +V*(pVC) = V.(pDVC,)-V*p(C, -C)V 

where mixture quantities are defined by 

4 =fs#s+J;#r (4 = V,h?C) 

and 

P = SSPS +stL? 

k = g,k, +& 

p = ~~~~~~ 

D =j& 

(4 

(5) 

(6) 

(7) 

(8) 

(9) 

In deriving the equations, it is assumed that the 
solid is stationary (V, = 0) and has continuous, non- 
deforming microstructure. The other basic assump- 
tions involved are : (i) two-dimensional laminar flow, 
(ii) incompressible Newtonian fluid, (iii) local thermo- 
dynamic equilib~um, i.e. 7 = T, = T, and C, = k,C, 
(for non-eutectic concentration), (iv) negligible 
macroscopic mass diffusion in the solid phase (D, = 
0), (v) negligible thermocapillary effects, (vi) negli- 
gible effects of small disturbances (e.g. dispersion 
fluxes, subcooling of the liquid, etc.) in the fields. If 
we invoke the Boussinesq approximation, the body 
force in equation (2) can be expressed as 

where T,, and C&r denote reference temperature and 
liquid concentration, respectively. 

Here, it should be mentioned that the transport 
equations written on the macroscopic scale are used 
to resolve the two-phase as well as the single-phase 
regions. In typical applications, physical systems to 
be analyz-d with a limited number of computational 
cells (or control volumes) encompass a large difference 
in scales. The solid-liquid morphology on the micro- 
scopic scale is, however, nearly fixed, being of the 
order of 10-5-10-4 m, and it is important to recognize 
the scale effect in modeling solidification of mixtures. 
For this reason, the non-dimensionalization of the 
transport equations is less meaningful than in single- 
phase problems. 

Since the energy equation contains temperature as 
well as enthalpy explicitly, it is necessary to define the 
enthalpy in terms of the temperature. With use of this 
definition, equation (3) can be reduced to the standard 
form of the conservation equation which is easy to 
solve numerically. The definition is also relevant to the 

thermodynamic relation of phase equilibrium from 
which the solid-liquid mass fraction is determined. 
Two concepts of the enthalpy definition have been 
proposed, one by Bennon and Incropera [17] and 
the other by Prakash and Voller [IS]. The major differ- 
ence between them is the selection of a dependent 
variable for the energy equation. In the former, the 
dependent variable is the total mixture enthalpy. In 
this case, the (equilibrium) temperature should be 
determined by the phase equilibrium diagram, be- 
cause there is no direct relationship between the total 
mixture enthalpy and the temperature. If both of them 
are known, the mass fraction is readily calculated by 
combining the definitions of total phase enthalpies 
and the mixture enthalpy. The latter takes sensible 
mixture enthalpy as the dependent variable so that 
the temperature is directly proportional to it. Then, 
the mass fraction should be determined from the 
phase equilibrium condition. Physically, there is no 
fundamental difference between the two methods. The 
specific form of the energy equation written by either 
of them has the diffusion-like and/or convection-like 
source terms which are, however, tricky to discretize 
and may cause numerical difficulties. This problem 
can be avoided by introducing a different definition 
of enthalpy. A sensible enthalpy, h, is defined as 

h = c,,,T (11) 

where the phase specific heats are assumed to be tem- 
perature and composition independent. With this 
definition and use of equation (5), the energy equation 
can be expressed, after some manipulation, as 

Note that there is no diffusion-like or convection-like 
source term. It should, however, be mentioned that 
equation (12) is valid only for V, = 0. 

In order to complete the formulation of the momen- 
tum equation, equation (2), the permeability tensor, 
K(‘), must be specified. Here, the principal flow direc- 
tions of interdendriti~ liquid have been selected to be 
parallel and normal to the primary dendrite arms. If 
the dendrite growth direction is not changed through- 
out the entire domain and process as is in a uni- 
directional solidification system, it is relatively simple 
to deal with the anisotropic permeability. In general, 
however, the growth direction does not necessarily 
coincide with imposed thermal conditions or coor- 
dinate axes. Accordingly, an appropriate model which 
relates the components of the ~~eability to the den- 
drite growth direction is needed. In this study, the 
growth direction of the primary dendrite arms is 
assumed to be parallel to local instantaneous tem- 
perature gradients. Although it is not clear that the 
assumption is still valid in the presence of thermo- 
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Fm. I. Principal directions of the permeability tensor. 

solutal convection, at least it is valid under con- 
strained growth conditions where the heat and mass 
are transferred by diffusion only [19]. 

Let (5, Y[) be the directions normal and parallel to 
a local isotherm, J’(_Y, J) = 0, at an arbitrary time as 
shown in Fig. 1. Then, (t, s) coincides with the prin- 
cipal axes of the permeability tensor K”). It is straight- 
forward to express each component of K’” in terms 
of the principal values, Kc, K,,, and ,j’(s. JJ), that is, 

.f”‘K,+Kq .f”tK, - KJ 

,f’(K:-K,,) K:+f”‘K, 1 (13 
where .f” is a derivative of ,f with respect to x. Conse- 
quently, the Dareian damping term in equation (2) 
has the following specific form 

In the above expressions, the derivative f” should be 
determined at every location as a function of time. 
Also, note that the non-diagonal terms of K(*) vanish 
in the case of the isotropic permeability or when the 
physical coordinates coincide with the principal axes. 

The permeability tensor still involves unspecified 
principal components Kc and ti;. Unfortunately, the 
available experimental correlations [?I for these com- 
ponents cannot be applied beyond the limited range 
of the liquid volume fraction (0.19 < 9, < 0.66). In a 
typical solidification process of NH,&H20 with an 
initial HZ0 concentration of 0.7, the liquid volume 
fraction of the mushy region is always greater than 0.8 
before eutectic solidification takes place. Moreover, 
since the permeability approaches infinity as the liquid 
volume fraction becomes close to unity, the per- 
meability at large values of 9, is of particular import- 
ance. Accordingly, the permeability should be evalu- 
ated from a theoretical model which covers its limiting 
behavior. In the absence of a more appropriate per- 
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I%. 2. Schematic of the physical model and coordinate 
system. 

meability-porosity relation, the Blake-Kozeny model 
was adopted in this study, 

s: 
K= K(:(l-g,)’ 115) 

where the coefficient K. is a function of the dendrite 
arm spacings. To accommodate this model in an 
anisotropic case, K in equation (15) is considered to 
be a representative permeability of the system which 
is the geometric mean of K: and K,, 

K = (K$&“2. (16) 

The principal permeability ratio, R, is also introduced 
as a measure of the anisotropy. It is defined as a ratio 
of the permeability component parallel to the primary 
dendrite arms to that normal to them, i.e. 

R = K,/K,. (17) 

The ratio R, of course, should be a function of the 
volume fraction and the dendrite arm spacings. but 
the functional relation is not available for large values 
of y,, therefore, a parametric study is considered. 
Three constant values of R, 0.5, 1.0, and 2.0 have 
been selected based on the experimental study for 
intermediate range of 9, and representative dendrite 
arm spacings. In this way, we can examine the effects 
of the anisotropy while the permeability of the system 
is kept constant in an average sense. 

The physical system simulated in this study is 

depicted in Fig. 2, which corresponds to a represen- 
tative experimental test arrangement [S]. Initially, 
superheated NH,Cl-H,O solution of uniform 

H20 concentration C,,, and at temperature TH fills 
the cavity. From time t > 0, the temperature of the 
right wall is suddenly changed to T,. which is chosen 

to be below the eutectic temperature T, to show the 
model capability, while the left wall is kept at tem- 
perature TH. Solidification is initiated at the cold wall, 
and thermosolutal convection develops with time. 
Since T, is lower than r,, there exist three distinct 
regions, i.e. pure solid, mushy, and pure liquid 
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Table 1. Data used in the present study 

Initial and boundary conditions 

L Cavity dimension [m] 0.0476 

G” Initial concentration 0.70 

Ti, Initial and heated wall temperature [K] 307.5 

Tc Cooled wall temperature [K] 253.15 

Thermophysical properties for NH,Cl-Hz0 system [ll. 12, 20, 211 

Density [kg m-‘1 
Specific heat [J g-’ K-‘1 
Thermal conductivity [w mm’ K-‘1 
Diffusivity [m’ ss’] 
Viscosity [kg mm’ SF’] 
Latent heat of fusion [J kg-‘] 
Thermal expansion coefficient [K-l] 
Solutal expansion coefficient 
Eutectic temperature [K] 
Eutectic concentration 
Equilibrium partition coefficient 
Permeability coefficient K, [m’] 

Solid Liquid 
1077.73 1077.73 

1870 3249 
2.7 0.468 

1.8 x lo-’ 
1.3 x lo-’ 

3.138 x 10’ 
3.8321 x 10m4 

0.25679 
257.15 
0.803 

5.556: lo-‘* 

regions. The solidification continues until the steady 

state is reached. 
The dimensions of the system and the imposed sol- 

idification conditions are listed in Table 1. The ther- 
mophysical property data used in the computations 

were obtained from various sources [l 1, 12, 20, 211 
and are summarized in Table 1. Although the mode1 
equations which have been described allow the density 

to vary with the phase, the density is assumed to be 
constant to ensure volume conservation as required 

by a fixed-grid numerical method. Impermeable walls 
as well as the constant density make the boundary 

conditions very simple, 

ac 
u=v=o, T= TH, ax=O atx=O (18) 

u=v=o, T= T,, 
ac 
z=O atx=L (19) 

aT ac 
u=v=() -=o, 

’ ay -=0 aty=OandL. 
ay 

(20) 

Method of solution 
The model equations were discretized by the con- 

trol-volume based finite difference method and were 
solved using the iterative SIMPLER algorithm [22]. 
Since the square cavity in which NH,Cl-H,O solution 
solidifies has been studied extensively, selection of an 
appropriate grid system is relatively easy. Various 
grids, e.g. 30 x 30 [15], 42 x 42 [23], and 50 x 50 [8] 
have been used to resolve the details of the flow struc- 
tures in the liquid and the mushy regions for different 
imposed conditions. By examining these studies, it 
was established that the 50 x 50 grid is able to reveal 
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the essential features of the transport process. The 
grid was slightly skewed in the x- and y-directions to 
provide a denser distribution of nodal points near 

the walls where the velocity, temperature, and con- 
centration gradients need to be accurately resolved. 

The preliminary computations showed that, for 
all simulated cases, a time increment of At = 1 s 
was sufficient to achieve convergence. Nevertheless, 

At = 0.5 and 0.75 s were used to ensure the con- 
vergence until 300 s of simulation time, i.e. at the 

early stage of the solidification where overall flow 
structures were changing rapidly. For each time step, 
the iterations were terminated when the residual 

source of mass was less than 1 x lo-*. Actually, this 
convergence criterion is severe enough to guarantee 
the conservation of the solute and to ensure that all 
the dependent variables remain unchanged. In this 
manner, each 1 s of simulation time required 15-20 s 

of CPU time on a CDC Cyber 205 supercomputer 
using the 50 x 50 grid. Calculations for every simu- 
lation continued until t = 2100 s, when the solidifica- 

tion reached nearly the steady state in a numerical 
sense. 

RESULTS AND DISCUSSIONS 

Simulations performed and validations 
Simulations were performed for three different 

values of the principal permeability ratio, i.e. R = 0.5, 
1 .O, and 2.0, for the same solidification conditions and 
with the same average permeability in order to restrict 
our focus on investigating the effects of the 
anisotropy. Plots for streamlines, isotherms, and 
liquid isocomposition-lines have the liquidus boun- 
dary superimposed as thick dotted lines. Streamlines 
associated with the clockwise rotating convection cells 
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4t 
A 0.001 
0 0.200 
C 0,400 
D 0.600 
E 0.800 
F 0.820 
G 0.840 
H 0.860 
I 0.880 
J 0.900 
K 0.920 
L 0.940 
M 0.960 
N 0.980 
0 0.999 

FIN. 3. Typical example of the liquid volume fraction dis- 
tribution (R = 1.0. t = 20 min). 

(solid lines) have negative values, while dotted stream- 
lines which are positive-valued denote counter- 
clockwise rotating cells. All positive- and negative- 
valued streamlines were plotted in the prescribed 
increments of 1.5 x 1O-4 and 7.5 x 10V4, respectively, 
to show the flow intensity as well as the structure. 
Isotherms and liquid jsocomposition contours are 
presented in ten equal increments of the normal- 
ized quantities, (T- rc j/( TH - T,) and (C, - C,,)/ 
(Ce - C,,), respectively. 

Prior to discussing the results of the simulations, 
the validity of the Blake-Kozeny model needs to be 
addressed. As shown in Fig. 3, the mushy region is 
very dilute, except in a very narrow region between 
lines A and E where eutectic solidification takes place. 
Since the Blake-Kozeny model is known to be appli- 
cable to small liquid volume fractions gl> it seems 
inappropriate to use it in the present study. No exper- 
imental correlation which is valid for large g,s is, how- 
ever, available in the literature. Also, the anisotropic 
effects are not expected to be drastically changed when 
a more realistic model is used instead. Considering 
these facts, it is thought that Blake-Kozeny model is 
useful, at least, for a parametric study, if reasonable 
values for the parameters, i.e. the permeability ratios, 
are selected. 

To validate the model predictions, a representa- 
tive case has been compared with available experi- 
mental results. The lack of detailed experimental data 
for temperature and/or concentration distributions 
means that the comparison was made only for flow 
structure which shows the essenrial features of the 
transport phenomena during the solidi~cation 
process. In Fig. 4, a predicted flow pattern for an 
isotropic case (R = 1.0) at t = 20 min is compared 
with a shadowgraph image which had been taken 
under the same conditions [24]. The comparison indi- 
cates that the present model is able to resolve the 
double-diffusive convection cells and the macroscopic 
solid-liquid interface (liquidus) morphology SUC- 

ib) 

FIG. 4. Comparison of the double-diffusive layer formation 
at f = 20 min : (a) experimental [24] and (b) predicted. 

cessfully. A signi~cant difference, however, exists in 
the thickness of the mushy region formed along the 
bottom as well as the cooled wall which is directly 
related to the solidification rate. The disagreement in 
the liquidus position along the cooled wall has also 
been reported by Christenson and Incropera [lo]. 
They attributed it to the weakness of model assump- 
tions such as laminar flow, local thermodynamic equi- 
librium, isotropic pe~eability, and uncertainty of the 
properties. The same limitations are also true for this 
study, except that the isotropic permeability assump- 
tion has been relaxed and is to be examined. In 
addition to these reasons, thermal inertia effects of the 
cavity walls which have been completely neglected can 
also contribute to the difference. On the other hand, 
the mushy region formed along the adiabatic bottom 
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(a) 
I 

tb) 

(e) 

FIG. 5. Development process of the double-diffusive convection for the isotropic case: (a) t = 5 min, 
(b) t = 15 min, (c) t = 25 min. (d) t = 30 min, (e) t = 30 min i 5 s, and (f) t = 35 min. 

wall in the shadowgraph is the result of the floating 
and settling of detached dendrite arms during the 
initial stages of the solidification [8]. Since the mech- 
anism of floating and settling is not understood, it is 
not modeled. Even though there are some quantitative 
discrepancies between the predicted and the exper- 
imental results, and the comparison is limited to the 
specific case, the model predictions show the quali- 
tative agreement in the fundamental features and 
trends of the solidification process. The model can, 
therefore, be used to investigate the effects of the 
anisotropy. 

Since the nature of the fundamental transport 
phenomena is expected to be similar for all simulated 
cases, the time evolution of the solidification process 
for a representative case (naturally the isotropic case, 
R = 1.0) is described first, then, the focus is on the 
discussion of differences among three simulations, i.e. 
the anisotropic effect. Figure 5 illustrates the flow 
patterns for It = 1.0 at selected times. At the early 
stage of solidification (Fig. 5(a)), the water-rich liquid 
which resulted from the solubility differences between 
the solid and liquid phases in the mushy region moves 
upward by the solutal buoyancy force against the 
thermal buoyancy force and forms a thin liquid layer 

below the top wall. In the pure liquid region below 
the upper layer, clockwise rotating cell develops owing 
to the temperature difference between the heated wall 
and the liquidus front. Despite the low temperature 
of the thin upper layer, high water concentration pre- 
vents the uppe~ost part of the liquid from solid- 
ifying. Due to sustained flow of water-rich liquid from 
the mushy region to the upper layer, the vertical thick- 
ness of the layer grows with the progression of time, 
forming a double-diffusive interface which separates 
colder, water-rich liquid layer from the warmer, 
water-deficient liquid in the lower convection cell. 
When the upper layer reaches a certain thickness, the 
thermal buoyancy forces initiate a recirculating flow 
inside the layer (Fig. 5(b)). As a result of this con- 
vective motion, remelting takes along the liquidus 
adjacent to the upper layer. 

With increasing time, the flow of interdendritic 
liquids into the upper layer is greatly diminished (com- 
pare the dotted lines in Fig. 5(c) with those of Fig. 
S(a)), while remelting continues by the fully developed 
thermal convection in the upper layer. This produces 
a decrease in the H,O concentration of the liquid. On 
the other hand, flow interaction (this will be discussed 
later in detail) between the lower layer and the mushy 
region increases the concentration of the liquid in 
the lower layer. The small concentration difference 
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between two layers, means that the thermal buoyancy 
forces in the lower layer become predominant over 
the density stratification forces which have main- 
tained the double-diffusive intercdce. particularly in 
the vicinity of the heated wait where the recirculating 
Row is strongest, then. the doubly-diff~ls~v~ interface 
tilts downward away from the heated wall and 

becomes unstable as shown in Figs, S(d) and (e). 
The solidification and the remelting along the liquidus 

continues as the flow is changing, but the rate is very 

small. In the final stage, the interface breaks up so 
that a single thermal convection ceil is established over 

the entire liquid region (Fig, Xfj). 

Now, let us consider the influences of the principal 

permeability ratio, R, on the solidification process. 
Figures 6 to 8 correspond to R = 0.5, 1.0, and 2.0, 
respectively, and show streamlines, isotherms, and 

liquid isocomposition-lines at a representative time 
(r = 20 min). First of ali, the vertical thickness of the 
upper Iayer which is clearly shown by the iso- 

composition-lines (Figs. 6(c), 7(c), and 8(c)) is 
increased with decreasing R. Differences are also 
found in the intensity of the recirculating flow in the 
upper layer, in the temperature and the concentration 

distributions. These are, in fact, of practical import- 
ance for the control of solidification processes. The 
differences have resulted from the interdendritic flow 
structures which are represented by the dotted lines 

in Figs. 6(a), 7(a), and 8(a). For convenience of the 
discussion, it is assumed that the principal directions 

of the permeability tensor coincide with the coor- 
dinate axes. Actually, this assumption is valid over 

most of the mushy region, because the temperature 
distributions (Figs. 6(b), 7(b), and S(b)) are nearly 
parallel to the cooied wall, except the uppermost part 

of the region modeled. The permeability components 
in the vertical and horizontal directions are then 

simply IY,~ and KC, respectively. From the definition 
of R. equation (I 7), K,, becomes large with decreasing 
R so that the upward interdendritic flow which is re- 

sptrnsiblc for the upper layer growth is intensifcd, 
Since the driving force for the interdcndritic Row 
which should be the solutal buoyancy force is acting 
in the vertical (g~avitatioilal) direction, KC. dcspitc 
increase according to R, hardly affects the flow 
structures in coI~~ar~s~~l1 with K,,. 

Due to the nature of density. st~tj~cation across 
the double-diffusive interpacc, the developing process 
of the double-diffusive cells can be illustrated by a 

concentration profile. In Fig. 9, time evolutions of the 
normalized liquid concentration vs the normalized 
height, J/L, at the middle of the cavity, s/L = 0.5, arc 

presented for each simulated case. These profiles make 
it clear that the double-di~nsi~e intcrfacc is char- 

acterized by a large coI7c~ilt~tion gradient across it. 
As solidification proceeds. the concentration of the 
upper layer decreases, while that of the lower layer 
increases. This fact provides background for the prc- 
ceding discussions. With increasing R. the con- 
centration as well as the depth of the upper layer 

decreases. The growth rate, of course, becomes 
smaller. Since the concentrations of the fowcr faycrs 
are nearly the same for alf KS at the same time, the 
mean liquid concentration over the entire liquid pool 
should be lower as R becomcs larger. In other words, 

when R is large, the mushy region effectively retains 
much more water-rich liquid. The reason is the same 
as was discussed earlier; the smaller vertical pcr- 
meability suppresses the interdendritic fluid flow. The 
mixture concentration, i.e. mass averaged con- 
centration in the mushy region. should. thercforc. be 
higher with increasing R. 

This fact has been confirmed by Fig. 10, which 
shows the variation of the normalized average COP 

centration, (C- C,,)/(C, - Ci,), along the x-axis at the 
midheight of the cavity (g/L = OS} and at a certain 
time (I = 20 min). Approximately, the liquidus iics 
near the starting point of a skarp decrease (point A). 
The liquid region is at nearly uniform concent~dt~on. 
while the concentration in the mushy region varies 
with location. The curves for three values of R reveal 
similar trends. but are diffcrcnt in magnitude. par- 

FE. ti. Predicted results for R = 0.5 at 20 min: (a) streamlines, (b) isotherms (equal increments), and 
(c) liquid isocomposition-lines (equal increments). 
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FIG. 7. Predicted results for R = I.0 at 20 min: (a) streamlines, (b) isotherms (equal increments), and 
(c) liquid isocomposition-lines (equal increments). 

(b) 

FIG. 8. Predicted results for R = 0.2 at 20 min: (a) streamlines, (b) isotherms (equal increments), and 
(c) liquid isocomposition-lines (equal increments). 
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FIG. 9. Variation of the vertical liquid concentration profile with respect to time at x/L = 0.5 : (a) R = 0.5, 
(b) R = I .O, and (c) R = 2.0. 

titularly in the mushy region. Here, it is worth noting discussion. The low mass diffusivity means that the 
that the curves vary in decreasing, increasing, and species are transported mainly by the interdendritic 
again decreasing manner in the vicinity of the sol- flow in the mushy region near the liquidus. The pen- 
idification front. This behavior indicates the flow etration (or influence) depth of the Aow is not, 
interaction between the pure liquid and the mushy however, as large, because the permeability decreases 
regions, as has been pointed out in the preceding sharply with decreasing liquid volume fraction (see 
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FIG. 10. Comparison ofthe horizontal concentration profiles 
at y/L = 0.5 and at t = 20 min. 

equation (I 5)). The distance between the liquidus pos- 
ition (point A) and the local maximum point (point 

B) can be regarded as the penetration depth. Note 
that the depth for R = 2.0 is largest among the three 

cases considered. This is caused by the relatively large 
effective horizontal permeability Kt for R = 2.0. This 
type of concentration profile cannot appear in the 
problem with diffusion only. Further research is, how- 
ever, needed to better understand the interaction of 

flow near the solidification front. 
Time evolution of important physical quantities at 

a fixed location provide useful transient information 
on the transport process during solidification. Figure 

11 depicts variations in the liquidus position, tem- 
perature, and liquid concentration with respect to time 
at three selected heights. y/L = 0.133, 0.5, and 0.867. 

These plots again reveal that complicated transport 
phenomena occur primarily in the upper portion of 
the system. It obviously resulted from the mutually 

opposing buoyancy forces in the present system. The 
situation is different when the thermal and the solutal 
buoyancy forces aid each other like in an aqueous 
sodium ~drbonate system [25]. it is, therefore, natural 
that the anisotropic effects appear at ,r/L = 0.867. 
Note that there is little difference between the simu- 
lated cases at .r/L. = 0.133 and 0.5. 

Variations of the liquidus positions at y/L = 0.867 

(Fig. 1 l(a)) indicate that a significant remelting is 
taking place along the solidification front. Although 
the temperature of the upper layer rises continuously 
beyond the local minimum (Fig. 11 (b)), the decrease 
of the concentration (Fig. 11 (c)f which makes the 
liquidus temperature higher results in no further 
remelting after a certain time. Here, the temperature 
and the concentration at x/L = 0.5 are considered as 
representative values at the height. The remelting is 
most severe when R = 0.5, not only because the earlier 
development of the thermal convection slows down 
the temperature decrease (near I5 min) in suite of the 
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FIG. Il. Transient behaviors al different heights, 
y/L = 0.133, 0.5 and 0.867: (a) liquidus position, (b) tem- 
peratures at r/L = 0.5. and (cl liquid concentration at 

s;L = 0.5. 

continuous supply of cold, water-rich liquid by the 
vigorous interdendritic flow, but also because the con- 
centration at the beginning of the remelting period is 
already high enough to lower the liquidus temperature 
below the local temperature. The behavior of the tem- 
perature and the concentration at y/Z. = 0.867 can 
also be used to show the time evolution of the double- 
diffusive convection. The sharp decrease of the tem- 
perature means that the double-diffusive interface 
descends across the location. The slowdown of 
decrease and the increase of the temperature indicate 
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the development of the thermal convection in the 

upper layer. Due to a small concentration difference 

between the upper’and lower layers at the later stage 

(Fig. 11 (c)), the interface is broken up and the two 
layers merge into a single convection cell, which is 
shown by the uniform concentration and by the high 
temperature at y/L = 0.867. Since the upper layer for 
R = 2.0 is very thin, variations of the quantities at 
y/L = 0.867 appear as if the double-diffusive con- 
vection were absent. The differences in temperature 

and concentration at y/L = 0.867 are, however, large 
enough to show the anisotropic effects, that is, smaller 
R advances the cold, water-rich layer growth and 

thereby the onset of the thermal convection, also the 
final liquid concentration for R = 0.5 is greater than 
those for R = 1 .O and 2.0. It should be mentioned that 

the point (x/L = 0.5, y/L = 0.133) is in the mushy 
region at the final stage of solidification. 

CONCLUSIONS 

To investigate effects of an anisotropic permeability 
of the mushy region on the transport process during 
the solidification of binary mixtures, a numerical 

simulation of an aqueous ammonium chloride solu- 
tion in a two-dimensional square cavity with heat- 
ing/cooling vertical walls and adiabatic horizontal 

connecting walls has been conducted. A modified 
definition of the enthalpy allowed the energy equation 
to be expressed in the standard form without con- 
vection-like and diffusion-like source terms. A specific 
permeability tensor for which principal directions are 

parallel to and normal to the columnar-dendrite arms 
was derived in terms of the principal components 

and the local temperature gradient to incorporate the 
anisotropy in the momentum equations. The principal 
permeability ratio, R, which has been introduced as a 
measure of the anisotropy was assumed to be constant 
regardless of the liquid volume fraction. Simulations 

for three different values of R, 0.5, 1.0, and 2.0, were 

performed, while the mean permeability was kept 
fixed. 

The computed results for a representative case 
agreed reasonably well with the available exper- 
imental observations in the sense that the essential 
features of the transport processes such as double- 
diffusive convection, macroscopic solid-liquid inter- 

face morphology, and remelting, were resolved suc- 
cessfully. The model capability was also shown by the 
predicted evolution of the solidification process, in 
which growth of the cold, water-rich layer, inter- 
dendritic flow structures, development of the sec- 

ondary convection cell, remelting along the liquidus 
in the upper layer, break-up of the double-diffusive 
interface, and merging of two layers were revealed in 
detail. 

The principal permeability ratios other than the 
unity correspond to anisotropic cases. Since the per- 
meability basically controls the flow characteristics, 
effects of the anisotropy naturally appeared in the 

interdendritic flow structures. Smaller R which is equi- 
valent to the larger effective permeability in the ver- 

tical direction resulted in the more vigorous inter- 

dendritic flow, which, in turn, promoted the growth 
of the upper layer and development of the thermal 
convection in the layer. The temperature and the con- 
centration distributions were also changed because of 
their intimate coupling with the flow field. Owing to 
the strong flow in the mushy region, the concentration 
of the upper layer was higher with smaller Rs. Conse- 

quently, the concentration difference between the 
(partially) solidified and the pure liquid regions 
became larger with decreasing R, which is of particu- 

lar importance in metallurgical applications. The 
depression of the liquidus temperature by the high 

concentration as well as the early developed thermal 
convection in the upper layer resulted in a severe 

remelting along the solidification front. The effective 
horizontal permeability, which is directly pro- 
portional to R, was found to be responsible for the 
flow interaction between the mushy and the pure 

liquid regions, although its contribution to the trans- 
port process is less significant than that of the vertical 
permeability. 

Considering that the uncertainty involved in avail- 
able permeability data is of the order of 10, the ratio 
of the principal value for the largest R to that for the 

smallest R treated in this study, e.g. (IY,,)~=~ J 
(K,,)R=2,0 = 2, is very small. Nevertheless, the effects 
of the anisotropy on the transport process during 
solidification appeared to be very significant. The 

anisotropy in the permeability should, therefore, be 

taken into account in mathematical-numerical model- 

ing of the process to obtain improved predictions. 
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EFFET DE L’ANISOTROPIE DE LA PERMEABILITE SUR LE TRANSPORT PENDANT 
LA SOLIDIFICATION D’UN MELANGE BINAIRE 

Resum&On simule numtriquement la solidification d’un m&lange binaire (NH,Cl--H,O) contenu dans 
une cavitk carrke. La permkabilite anisotrope de la rtgion boucuse est incorport-e dans le modZle par un 
tenseur de permt-abilitt sp&cifique et le rapport R de permeability. La comparaison des rbsultats avec 
des don&es exp~rimentales connues montre que lc mod& est capable de rtsoudre Its ca~~ct~ristjques 

fon~m~n~les du m&canisme de solidi~cation. Les effets de l’anisotropie paraissent &re sensibles. Un petit 
rapport R de permtabiliti: aide & la croissance d’une couche secondaire mais aussi conduit i une grdnde 
diff&ence de concentration entre la zone boueuse et celle de liquide pur. A cause de l’abaissement dc la 
tempkrature du liquidus par unc concentration &lev&c. et de la convection thermique dCvelopp&e plus t8t 
dans la couche supkrieure, il se produit une fusion. De plus, I’int6raction d’tcoulemcnt d travcrs le front 

dc solidification macroscopique devient plus importante quand le rapport R de permkabilitk augmente. 

DER EINFLUSS EiNER ANISOTROPEN PERMEABILITAT AUF DEN 
TRANSPORTPROZESS BE1 DER ERSTARRUNG EINES ZWEISTOFFGEMISCHES 

Z~ammenfa~ung-Die Erstarrung eines in einem quadratischen Holllraum cllt~ltenen Zwei- 
stoffgemisches (NH&-H,O) wird numerisch untersucht. Die anisotrope Permeabilitit des Vcr- 
festigungsgebietes wird mit Hilfe des spezifischen Permeabilititstensors und des Permeabilit$tsverh:dltnisses 
R in das Model1 eingegliedert. Ein Vergleich der Ergebnisse mit friiher berichteten Versuchsdaten zeigt. 
dal3 das Model1 in der Lage ist, fundamentale Eigenschaften des Erstarrungsvorgangs zu beschreiben. Die 
Auswirkungen der Anisotropie scheinen dabei signifikant zu sein. Ein kleines Permeabilit%sverhiltnis R 
fiirdert nicht nur das Wachstum der Sekundirschicht, sondern ergibt aul)erdem eine groRe Kon- 
zentrationsdifferenz zwischen dem Erstarrungsgebiet und der reinen Fliissigkeit. Es ergibt sich such ein 
Wicderaufschmelzen aufgrund der ko~lzentrationsbedingtetl Erniedrigung dcr Ver~~ssi~ungstemperatur 
und der bereits friiher entwickelten thermischen Konvektil~n in der oberen Schicht. Zudem wird die 
Wechselwirkung der Fliissigkeit an der makrosk~~pischen ~rstar~n~s~rollt mit wachsendem Per- 

meabilit~tsverh~itnis R starker. 

BJIllIIHME AHW30TPOIIHOfi HPOHW4AEMOCTM HA IIPOUECC I’IEPEHOCA IIPH 
SATBEPAEBAHHW 6klHAPHOn CMECH 

AIuio’rnunn-%icnemro MonenapyeTca samepneeanwe 6mrapfiol cMecu (NH&I-H,O), conepxameicr 
l3 IIOJIOCTEI KBZlApaTHOrO CeWSlHR. Aaa3oTpomiaa IIpOHHUaeMOCTb JtByX@UEiOii 3OHbl yWTblBaeTCa Cne- 

IWUIbHblM TQUOpOM upOIi%i~aeMOCT~ H OTHOIUCHUCM rJiaBHbIX IipOHS%UaeMOCT& R. CpaBHeHHe pesynb- 

TaToa c paHee O~y6n~KOBaHH~MU 3Kcnep~MeaTa~bHbIMH namrbrhm rroxa3blaaer, 9~0 pacwaTpnaaeh+arr 

Mone8b n03aonaeT 0n~~en~Tb 0cHoaHbIe oco6eHH~TH npolrecca 3aTaepLtesaar;rrr. IIoKa3aH0, PTO 

*KTM aH~3OTpO~~~ IIBA~~I~TCII cy4e~~HHbl~K. Manoe 3Haqemie 0THo~eH~~ npoH~uaeMo~e~ R 
He ‘roJIbKO cnoco6cr~yef pOCTy BTOpB3HOfO cnox, HO II rlptlBOL@iT K 6onbmoti pa3HOCTn KOHUeHTpaI&iii 

ABYX@3HOii u XCHAKOG o6nacTeii. KpoMe TOrO, Gnaronapa Cmi~emim TeMnepaTypbl JIBKBllAyCa 38 CYeT 

6onbmeZi KOHuCHTpaI&ia %I Bojree PaHHerO pa3BHTHK TetlJlOBOii KOHBBKUHH B BepXiiCM CJlOt? ,IpOHCXOAHT 

BTOPHVHOe llJKU3JIeHHe. 

aamia yc5inaeaeTcn c yaenwiewieM oTnomemin npomiuaeMocTefi R. 


